China OEM 12V 80W Hollow Shaft DC Motor for Garage Door with Free Design Custom

1. Structure: Permanent Magnet DC Brushed motor+Worm Gearbox
2.Size: W77.3*L108*H185mm
3. Shaft: 16mm
4. Certification: ISO9001, ROHS
5. Endplay: 0.5mm Max
6. Rotation: CW/CCW reversible
7. Voltage: 12V, 24V, 110V, 220V DC etc.
8. Performance: As request after evaluation
9. Encoder and connector available
Products Show More Products 1218 N20 Worm Gearmotor 3246 Worm Geamotor with Encoder 3249 Worm Gearmotor 4058 Worm Gearmotor 5037 Worm Gearmotor 5882 Worm Gearmotor 52S Worm Gearmotor R59R Worm Gearmotor R63L Worm Gearmotor R63R Worm Gearmotor with Encoder R76L Hollow Shaft Gearmotor R76R Hollow Shaft Gearmotor R76R Worm Gearmotor R76L Gearmotor With Encoder R76R Worm Gearmotor R76R Wprm Gearmotor R90R Worm Gearmotor 63S Wrom Gearmotor 90L Worm Gearmotor 76 Worm Gearmotor 76S Worm Gearmotor Our Service FlexibleAll of our products are made based on different requirements by choossing suitable materials and design.Except the product itself, we also provide OEM service and related accessories for your convenience.
Professional40+ engineers with more than 20 years experience in motor industry.We provide our clients professional service and high quality products.
SwiftWe ensure your inquiry and query before and after sales can be handled within 24 hours except the weekends and holidays.
Our Company Factory450+ Experienced staff WorkshopClean and tidy production lines
WarehouseManage the warehouse based on FIFO
Team40+ experienced engineer and 10+ professional sales
FAQ Q: What kind products you can provide? A: Our main products are AC Motors, DC Motors, Gear Motors, Stepper Motors, Synchronous Motors and Generators(dynamos). We also have our own plastic injection and metal stamping and die casting factories which enables us to provide plastic parts and metal parts and OEM service for whole products including packing. Q: Can I have a motor with 12V or for XXX application? A: Please share more details like the speed, torque, motor size. If you can send us a picture with marked dimension or detailed datasheet, Buy Stainless Steel Made Highly Durable Spline Shaft From India At Best Price that’ll be great. We can’t tell what kind motor you are looking for just by voltage and application. Q: Can you share the lifetime of the motor?A: For all of our motors, they are custom made based on different requirements, so there is no standard lifetime. And lifetime is also related how you use the motor under which load. Normally our client will provide lifetime requirements and noise level etc. in the beginning then when we arrange samples, we will take those into consideration to choose suitable motor and materials to reach. Client will perform lifetime testing in their lab and their order will be arranged based on the passed samples. Q: Can you provide accessories like cables, connector, gear, encoder etc.? A:Yes, we can. If those are not standard, extra cost for moulding might be needed. Q: What kind encoder you can provide? What is the resolution? A: We can provide magnetic and optical encoder based on different resolution requirements(3PPR, 12PPR, 16165681001616568200 High-quality screw air compressor gear drive group 1616-5681-001616-5682-00 For CZPT GA45 13PPR, 100PPR etc.). Extra cost for pcba might be needed if not existed. Q: What kind certifications you can provide? A: ROHS is the basic certification. For others, part of them we can provide REACH, CE etc. For others, extra cost might be needed if we need to provide. Q: Can I place a credit order via Alibaba directly without commnication with you? A: I am afraid NOT except for those online wholesales products which you can see specific price for certain range. We are not retailer and if there is no further order which can meet our MOQ, we can’t provide any sample even you pay. Q: How long is your delivery time?A: For samples, 5~25days and for orders, 20-35 days depends on quantity and requirements. Q: Do you provide samples ? Is it free or not?A: Yes, but we only provide samples for clients can meet our MOQ for further order after sample approval.Some of them are free and the others are not. Freight will be paid by the buyer. Q: Can I get a spec before sample arrangement? A: For all of our motors, we customerize them based on different requirements. We don’t make standard ones and put then in warehouse then sell to clients. Spec is available after sample making. Sometimes if we arranged similar ones before, WP series variable ratio speed reducer worm drive gearbox we can provide for reference. For others, we can only provide the outline.Q: How can we start from samples?A: Our sales will communicate with you about the technical requirements and also quantity, application etc. After we agree on price and also the performance requirements , we will send you PI or establish an order via Alibaba. Once get your payments, we will arrange the sample making. Q: Can you arrange the delivery via our account?A: Sure. But if you don’t have any courier account, we can also check the freight here and add that part in the PI. Q: Can I pay via Paypal, Credit card or West Union?A: Yes, we can accept those ways. Q: What is your terms of payment ?A: Payment=5000USD, AUTOROUND Tensioner PulleyIdler Pulley for Truck SCANIA 1510698 1858884 1795774 APV1119 T36517 53257110 VKMCV56008 30% T/T in advance ,balance before shippment.If you have any other question, pls feel free to contact us as below:

Calculating the Deflection of a Worm Shaft

In this article, we’ll discuss how to calculate the deflection of a worm gear’s worm shaft. We’ll also discuss the characteristics of a worm gear, including its tooth forces. And we’ll cover the important characteristics of a worm gear. Read on to learn more! Here are some things to consider before purchasing a worm gear. We hope you enjoy learning! After reading this article, you’ll be well-equipped to choose a worm gear to match your needs.
worm shaft

Calculation of worm shaft deflection

The main goal of the calculations is to determine the deflection of a worm. Worms are used to turn gears and mechanical devices. This type of transmission uses a worm. The worm diameter and the number of teeth are inputted into the calculation gradually. Then, a table with proper solutions is shown on the screen. After completing the table, you can then move on to the main calculation. You can change the strength parameters as well.
The maximum worm shaft deflection is calculated using the finite element method (FEM). The model has many parameters, including the size of the elements and boundary conditions. The results from these simulations are compared to the corresponding analytical values to calculate the maximum deflection. The result is a table that displays the maximum worm shaft deflection. The tables can be downloaded below. You can also find more information about the different deflection formulas and their applications.
The calculation method used by DIN EN 10084 is based on the hardened cemented worm of 16MnCr5. Then, you can use DIN EN 10084 (CuSn12Ni2-C-GZ) and DIN EN 1982 (CuAl10Fe5Ne5-C-GZ). Then, you can enter the worm face width, either manually or using the auto-suggest option.
Common methods for the calculation of worm shaft deflection provide a good approximation of deflection but do not account for geometric modifications on the worm. While Norgauer’s 2021 approach addresses these issues, it fails to account for the helical winding of the worm teeth and overestimates the stiffening effect of gearing. More sophisticated approaches are required for the efficient design of thin worm shafts.
Worm gears have a low noise and vibration compared to other types of mechanical devices. However, worm gears are often limited by the amount of wear that occurs on the softer worm wheel. Worm shaft deflection is a significant influencing factor for noise and wear. The calculation method for worm gear deflection is available in ISO/TR 14521, DIN 3996, and AGMA 6022.
The worm gear can be designed with a precise transmission ratio. The calculation involves dividing the transmission ratio between more stages in a gearbox. Power transmission input parameters affect the gearing properties, as well as the material of the worm/gear. To achieve a better efficiency, the worm/gear material should match the conditions that are to be experienced. The worm gear can be a self-locking transmission.
The worm gearbox contains several machine elements. The main contributors to the total power loss are the axial loads and bearing losses on the worm shaft. Hence, different bearing configurations are studied. One type includes locating/non-locating bearing arrangements. The other is tapered roller bearings. The worm gear drives are considered when locating versus non-locating bearings. The analysis of worm gear drives is also an investigation of the X-arrangement and four-point contact bearings.
worm shaft

Influence of tooth forces on bending stiffness of a worm gear

The bending stiffness of a worm gear is dependent on tooth forces. Tooth forces increase as the power density increases, but this also leads to increased worm shaft deflection. The resulting deflection can affect efficiency, wear load capacity, and NVH behavior. Continuous improvements in bronze materials, lubricants, and manufacturing quality have enabled worm gear manufacturers to produce increasingly high power densities.
Standardized calculation methods take into account the supporting effect of the toothing on the worm shaft. However, overhung worm gears are not included in the calculation. In addition, the toothing area is not taken into account unless the shaft is designed next to the worm gear. Similarly, the root diameter is treated as the equivalent bending diameter, but this ignores the supporting effect of the worm toothing.
A generalized formula is provided to estimate the STE contribution to vibratory excitation. The results are applicable to any gear with a meshing pattern. It is recommended that engineers test different meshing methods to obtain more accurate results. One way to test tooth-meshing surfaces is to use a finite element stress and mesh subprogram. This software will measure tooth-bending stresses under dynamic loads.
The effect of tooth-brushing and lubricant on bending stiffness can be achieved by increasing the pressure angle of the worm pair. This can reduce tooth bending stresses in the worm gear. A further method is to add a load-loaded tooth-contact analysis (CCTA). This is also used to analyze mismatched ZC1 worm drive. The results obtained with the technique have been widely applied to various types of gearing.
In this study, we found that the ring gear’s bending stiffness is highly influenced by the teeth. The chamfered root of the ring gear is larger than the slot width. Thus, the ring gear’s bending stiffness varies with its tooth width, which increases with the ring wall thickness. Furthermore, a variation in the ring wall thickness of the worm gear causes a greater deviation from the design specification.
To understand the impact of the teeth on the bending stiffness of a worm gear, it is important to know the root shape. Involute teeth are susceptible to bending stress and can break under extreme conditions. A tooth-breakage analysis can control this by determining the root shape and the bending stiffness. The optimization of the root shape directly on the final gear minimizes the bending stress in the involute teeth.
The influence of tooth forces on the bending stiffness of a worm gear was investigated using the CZPT Spiral Bevel Gear Test Facility. In this study, multiple teeth of a spiral bevel pinion were instrumented with strain gages and tested at speeds ranging from static to 14400 RPM. The tests were performed with power levels as high as 540 kW. The results obtained were compared with the analysis of a three-dimensional finite element model.
worm shaft

Characteristics of worm gears

Worm gears are unique types of gears. They feature a variety of characteristics and applications. This article will examine the characteristics and benefits of worm gears. Then, we’ll examine the common applications of worm gears. Let’s take a look! Before we dive in to worm gears, let’s review their capabilities. Hopefully, you’ll see how versatile these gears are.
A worm gear can achieve massive reduction ratios with little effort. By adding circumference to the wheel, the worm can greatly increase its torque and decrease its speed. Conventional gearsets require multiple reductions to achieve the same reduction ratio. Worm gears have fewer moving parts, so there are fewer places for failure. However, they can’t reverse the direction of power. This is because the friction between the worm and wheel makes it impossible to move the worm backwards.
Worm gears are widely used in elevators, hoists, and lifts. They are particularly useful in applications where stopping speed is critical. They can be incorporated with smaller brakes to ensure safety, but shouldn’t be relied upon as a primary braking system. Generally, they are self-locking, so they are a good choice for many applications. They also have many benefits, including increased efficiency and safety.
Worm gears are designed to achieve a specific reduction ratio. They are typically arranged between the input and output shafts of a motor and a load. The two shafts are often positioned at an angle that ensures proper alignment. Worm gear gears have a center spacing of a frame size. The center spacing of the gear and worm shaft determines the axial pitch. For instance, if the gearsets are set at a radial distance, a smaller outer diameter is necessary.
Worm gears’ sliding contact reduces efficiency. But it also ensures quiet operation. The sliding action limits the efficiency of worm gears to 30% to 50%. A few techniques are introduced herein to minimize friction and to produce good entrance and exit gaps. You’ll soon see why they’re such a versatile choice for your needs! So, if you’re considering purchasing a worm gear, make sure you read this article to learn more about its characteristics!
An embodiment of a worm gear is described in FIGS. 19 and 20. An alternate embodiment of the system uses a single motor and a single worm 153. The worm 153 turns a gear which drives an arm 152. The arm 152, in turn, moves the lens/mirr assembly 10 by varying the elevation angle. The motor control unit 114 then tracks the elevation angle of the lens/mirr assembly 10 in relation to the reference position.
The worm wheel and worm are both made of metal. However, the brass worm and wheel are made of brass, which is a yellow metal. Their lubricant selections are more flexible, but they’re limited by additive restrictions due to their yellow metal. Plastic on metal worm gears are generally found in light load applications. The lubricant used depends on the type of plastic, as many types of plastics react to hydrocarbons found in regular lubricant. For this reason, you need a non-reactive lubricant.

China OEM 12V 80W Hollow Shaft DC Motor for Garage Door  with Free Design CustomChina OEM 12V 80W Hollow Shaft DC Motor for Garage Door  with Free Design Custom